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Abstract
The analytic element method, like the boundary integral equation method, gives rise to a system of equations

with a fully populated coefficient matrix. For simple problems, these systems of equations are linear, and a direct
solution method, such as Gauss elimination, offers the most efficient solution strategy. However, more realistic
models of regional ground water flow involve nonlinear equations, particularly when including surface water and
ground water interactions. The problem may still be solved by use of Gauss elimination, but it requires an iterative
procedure with a reconstruction and decomposition of the coefficient matrix at every iteration step. The nonlinear-
ities manifest themselves as changes in individual matrix coefficients and the elimination (or reintroduction) of
several equations between one iteration and the other. The repeated matrix reconstruction and decomposition
is computationally intense and may be avoided by use of the Sherman-Morrison formula, which can be used to
modify the original solution in accordance with (small) changes in the coefficient matrix. The computational
efficiency of the Sherman-Morrison formula decreases with increasing numbers of equations to be modified. In
view of this, the Sherman-Morrison formula is only used to remove equations from the original set of equations,
while treating all other nonlinearities by use of an iterative refinement procedure.

Introduction
The analytic element method (AEM) requires the

determination of one or more ‘‘strength’’ parameters for
each analytic element in the model domain (Strack 1989;
Haitjema 1995). These strength parameters are solved for
by defining appropriate conditions at collocation points,
usually at the elements themselves. For instance, to deter-
mine the sink density of a constant-strength line-sink,
a known potential may be specified at its center. Since all
elements contribute to the potential field in an infinite
domain, the resulting coefficient matrix for the set of
equations is fully populated. The AEM shares this charac-
teristic with the closely related boundary integral equa-
tion method (BIEM) (Liggett and Liu 1983). In view of
this full matrix, most AEM and BIEM models have em-
ployed a direct solution method, such as Gauss

elimination. A popular implementation of Gauss elimina-
tion is LU decomposition followed by forward elimina-
tion and back substitution applied to the ‘‘known vector’’
(Forsythe et al. 1977). The latter procedure is used by the
public domain AEM solver GFLOW1 (Haitjema 1995).

Application of the AEM to regional ground water
flow problems, however, generally leads to a set of non-
linear equations because (1) Cauchy-type boundary con-
ditions in unconfined aquifers result in at least one of the
matrix coefficients (per equation) being dependent on the
solution and (2) during the solution procedure, the status
of some strength parameters may change from a priori
unknown to known. For instance, if a line-sink represents
a loosing stream section and the water table drops below
the resistance layer that separates the aquifer from the
stream, the stream starts percolating water and the sink
density (strength) of the line-sink does no longer depend
on the head in the aquifer; it can be calculated in
advance. Similarly, when solving surface water and
ground water conjunctively, loosing stream sections may
be found to have no streamflow, which implies a zero
sink density for the associated line-sinks (Mitchell-
Bruker and Haitjema 1996). This requires iterations be-
tween (direct) solutions by which some matrix elements

1School of Public and Environmental Affairs, Indiana Univer-
sity, SPEA 439, Bloomington, IN 47405; haitjema@indiana.edu

Received June 2003, accepted July 2005.
Copyright ª 2005 The Author(s)
Journal compilationª 2006 National Ground Water Association
doi: 10.1111/j.1745-6584.2005.00145.x

102 Vol. 44, No. 1—GROUND WATER—January–February 2006 (pages 102–105)



are updated and some equations are eliminated (or re-
introduced) at successive iteration steps. Consequently,
the construction of the coefficient matrix and its LU
decomposition must be repeated for each iteration, which
is computationally inefficient.

In this paper, I show how this process can be acceler-
ated by modifying the solution in response to the changes
in the system of equations, thus avoiding the repeated
reconstruction and decomposition of the coefficient matrix.

Iterative Use of Direct Solutions
The system of equations that results from the AEM

formulation may be written as:

aijxj ¼ bi ð1Þ
by which the coefficient matrix aij contains the ‘‘influ-
ences’’ of all analytic elements on all collocation points and
is fully populated. The vector xi is the ‘‘solution vector’’ and
contains the strength parameters of the analytic elements.
The vector bi is the known vector resulting from the bound-
ary conditions formulated at the collocation points. In writ-
ing Equation 1, the Einstein summation convention is
adopted, implying summation over the dummy index j.

Iterative Refinement
In GFLOW, the solution process is repeated several

times, whereby Equation 1 is replaced by (Haitjema
1995):

aij

�
x
ðnÞ
j 2 x

ðn2 1Þ
j

�
¼ b

ðnÞ
i 2 b

ðn2 1Þ
i ð2Þ

where x
ðnÞ
i and b

ðnÞ
i are the solution vector and known

vector, respectively, of the current solution step n, while
x
ðn2 1Þ
i and b

ðn2 1Þ
i are the solution vector and known

vector, respectively, at the previous solution step n 2 1.
The formulation 2 has an advantage over Equation 1 in that
the numerical accuracy of the Gauss elimination procedure
is applied to calculating the change in the strength parame-
ters between iterations, rather than calculating the strength
parameters themselves. Since GFLOW1 is coded in dou-
ble-precision Fortran, successive solutions are likely to
lead to an iterative refinement of the strength parameters.

Solving a Nonlinear Problem
As stated in the Introduction, nonlinearity may come

about in a number of different ways. Limiting us to the
example of a system of equations with line-sinks only,
there are two types of nonlinear behavior: (1) line-sinks
that represent surface water features that are separated
from the aquifer by a resistance layer and (2) line-sinks,
the strength of which is dictated by available streamflow
(conjunctive surface water and ground water flow solu-
tions). In case 1, the change in aij constitutes a modifica-
tion of the diagonal element aii, while for case 2, the
strength parameter can be calculated beforehand and the
associated equation is removed from the system of equa-
tions. Due to these changes in the system of equations, it

is necessary, at each iterative step, to generate a new
known vector and a new matrix, decompose that matrix,
and apply forward elimination and back substitution to
obtain a new solution vector. The bulk of the computa-
tional effort, however, is associated with the matrix recon-
struction and decomposition.

Using the Sherman-Morrison Formula
It is possible to change matrix coefficients and even

eliminate entire equations from an existing set of equa-
tions by modifying the solution vector xi for the original
set of equations into a new solution vector for the modi-
fied set of equations without rebuilding and decomposing
the matrix in successive iterations. To do so, I make use
of the Sherman-Morrison formula (Gill et al. 1974; Press
et al. 1992; Golub and Loan 1996), which, written in
index notation, is:

�
aij 2 uivj

�21 ¼ a21
ij 1

a21
ik ukvla

21
lj

12 k
ð3Þ

with

k ¼ vka
21
kl ul ð4Þ

The vector product uivj forms a correction matrix for
the original coefficient matrix aij. The Sherman-Morrison
formula provides an expression for the modification of
the inverse of the original coefficient matrix based on this
correction. In practice, however, the inverse matrix is sel-
dom calculated. Therefore, expression 3 with Equation 4
will be applied to the set of equations 1 to obtain a correc-
tion of its solution xi based on the modification of
the coefficient matrix as shown on the left-hand side of
Equation 3. In fact, Equation 1 can be seen as represent-
ing Equation 2 when xi and bi are replaced by the differ-
ences of these vectors as shown in Equation 2.

I write the solution xi as:

xi ¼ a21
ij bj ð5Þ

I write the solution x�i to the modified set of equa-
tions as:

x�i ¼
�
aij 2 uivj

�21
bj ð6Þ

In writing Equations 5 and 6, it is implied that the
known vector bi belongs to the modified set of equations.
Applying Equation 3 yields:

x�i ¼ a21
ij bj 1

a21
ik ukvla

21
lj bj

12 k
ð7Þ

where k is defined by Equation 4. Expression 7 may be
rewritten by use of Equation 5 as:

x�i ¼ xi 1
u9i vlxl
12 k

ð8Þ

where u9i is defined as

u9i ¼ a21
ij uj ð9Þ
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with which k becomes:

k ¼ vku9k ð10Þ

In summary, the computation of the solution x�i for the
modified set of equations requires the following steps: (1)
calculate an initial solution xi based on the original coeffi-
cient matrix and the known vector bi for the modified set
of equations; (2) calculate the vector u9i , which is the
solution to a system of equations with the original coeffi-
cient matrix and the vector ui as known vector; and (3)
calculate the new solution vector x�i by use of Equation 8
with Equation 10. Steps 1 and 2 can be accomplished by
any solution method, including the LU decomposition,
forward elimination, and back substitution employed in
GFLOW1.

Eliminating One Equation
Once a line-sink strength parameter changes its sta-

tus from unknown to known, its corresponding equation
must be removed from the original set of equations.
Instead of actually removing the nth equation, however,
we will force the solution to contain the specified value
for the line-sink strength parameter. Hence, xn ¼ 0 since
xn represents the change in strength. To obtain this result,
we replace the original nth equation by:

0x1 1 0x2 1 0x3 1 � � � 1 annxn 1 � � � 1 0C ¼ 0 ð11Þ

where ann may be any nonzero number, but for numerical
reasons is best selected very large. All other equations
remain unaltered. Expression 11 implies that all matrix
coefficients in row n must be set to zero, except ann,
which must be set to a large number. In the Sherman-
Morrison formula (Equation 3), this is accomplished by
selecting the vectors ui and vi as follows:

ui ¼ 0 ði 6¼ nÞ; un ¼ 1 ð12Þ
and

vi ¼ ani ði 6¼ nÞ; vn ¼ 10100 ð13Þ

The choice for vn is arbitrary.

Eliminating N Equations
If more than one equation is to be removed, which is

usually the case, the new set of equations may be written
in the form:  

aij 2
XN
n¼1

u
n
iv
n
j

!
xi ¼ bi ð14Þ

The solution xi to Equation 14 may be obtained by
repeated application of the Sherman-Morrison formula.
To develop expressions for this procedure, I define the
coefficient matrix a

m
ij as the original matrix with m

modifications:

a
m
ij ¼

 
aij 2
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u
n
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n
j

!
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I further define x
m

i as

x
m
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�
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and similarly
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The solution vector x
m
i is obtained by solving the

original system of equations with m equations modified

and the vector bi as known vector. The solution vector u9
n
m

i

is obtained by solving the original system of equations

with m equations modified and the vector u
n
i as known

vector. Successively applying the Sherman-Morrison for-

mula leads to the following recursion formula for x
m
i:
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and where

x
1
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Evaluation of Equation 18 with Equation 19 requires

the calculation of u9
m
m

i by use of the following recursion
formula:

u9
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where k
n
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k
n
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n

ku9
n
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and where

u9
m
1

i ¼ a21
ij u

m
j ð23Þ

Performance
The Sherman-Morrison formula is only efficient if

the number of changes to the original system of equations
is limited. In view of this, the modification of individual
matrix coefficients for Cauchy-type boundary conditions
(case 1 of the nonlinearities associated with line-sinks) is
not implemented. Instead, this nonlinearity is handled as
part of the iterative refinement procedure. The case 2
nonlinearity, the removal or reintroduction of equations,
occurs less frequently and can only be handled by either
reconstructing or altering the matrix followed by mat-
rix decomposition, or by use of the Sherman-Morrison
formula as outlined previously. The computational
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efficiency then depends on the number of equations being
removed. A standard LU decomposition requires 1

2N
3

loops of one multiplication and one addition (Press et al.
1986). The Sherman-Morrison procedure requires 3N2

such loops, but with ui, a unit vector, this is reduced to
2N2. The two procedures can be expected to be compara-
ble in computational effort when m equations are being
removed, so that 1

2N
3 ¼ 2mN2, which means m ¼ 0.25N.

In GFLOW1, solving a system of 800 equations, the
break even point was found experimentally to be a little
higher: m ¼ 0.3N. In other words, the Sherman-Morrison
routine was more efficient than LU decomposition as long
as the number of equations removed was < 30%.

In GFLOW1, the matrix solution procedure is orga-
nized in such a manner that all influence functions have
to be calculated only once; they are stored to disk and
reused for generating the known vector and verifying
boundary conditions during successive iterations. Under
these circumstances, the LU decomposition consumes
~95% of the computational effort for all but the first iter-
ation. The Sherman-Morrison procedure for this case
leads to significant savings in total solution time. The re-
sults reported here are approximate and depend some-
what on the manner in which the procedures are coded.
In most practical cases, the equations include not only
the effects of line-sinks but also those of line-doublets
associated with inhomogeneity domains, where each line-
doublet requires two equations (vs. one for each line-
sink). Consequently, the number of equations to be
removed is usually well below 30% of the original set,
which makes the Sherman-Morrison approach attractive.
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