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The Issue

Streams or lakes often have a layer of silt and organic material on the bottom,
creating resistance to flow from the aquifer into the stream or lake, or vice versa.
In addition, the stream or lake may not be in direct contact with the aquifer,
but the stream or lake bottom may be separated from the aquifer top by a low
permeable layer (e.g. clay). The resistance to flow through such a low permeable
stream bottom or lake bottom may locally be of importance to the groundwater
flow regime. For instance, a well that withdraws water from an aquifer near a
stream or lake may receive some of its water from that surface water body. The
precise amount depends, among other things, upon the resistance of the bottom
layer of the stream or lake. To properly represent this effect in GFLOW, the
line-sinks used to model the stream may be given a resistance parameter and
a width. In WhAEM , however, the line-sinks do not have these attributes,
but it is still possible to take the effect of bottom resistance into account. The
analysis below leads to some rules of thumb regarding the use of line-sinks with
or without a resistance parameter in representing streams or lakes with bottom
resistance.

Mathematical Description of Flow

In Figure a schematic cross section over a stream and the underlying aquifer is
depicted. The stream has a resistance layer which separates the stream channel
from the aquifer. The resistance layer has a thickness δ [m] and hydraulic
conductivity kc [m/day], which translates in a resistance to flow c [days] as

c =
δ

kc
(1)

The width of the stream is 2b, the water level in the stream is φs, and the head
in the aquifer at the stream boundary is φ0. The head underneath the stream φ
varies across the stream width: φ = φ(x). For the case of one-dimensional flow
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captionConceptual model of a stream with a bottom resistance layer.

the head φ underneath an aquitard is given by Verruijt, 1970 (page 30, equation
4.8) as:

φ = φs + Aex/λ + Be−x/λ (2)

where A and B are obtained from boundary conditions. The parameter λ [m]
is the ”leakage factor” or ”characteristic leakage length” defined as:

λ =
√

kHc (3)

where k is the hydraulic conductivity in the aquifer and H is the aquifer thick-
ness. The total flow integrated over the aquifer height underneath the stream
bottom follows from Darcy’s law:

Qx = −kH
dφ

dx
(4)

which becomes with (2):

Qx = −kH

λ

(
Aex/λ −Be−x/λ

)
(5)

The boundary conditions necessary to resolve A and B are:

x = 0 ; Qx = 0 and x = b ; φ = φ0 (6)

Substituting the condition at x = 0 in (5) yields that A = B. Substituting the
condition at x = b in (2) leads to:

A = B =
∆φ

2 cosh(b/λ)
(7)

where ∆φ is defined as the difference between the water level in the stream and
the head in the aquifer at x = b or x = −b:

∆φ = φ0 − φs (8)
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Figure 1: A stream modeled by two line-sink strings on either stream boundary.

Combining (7) with (5) yields the following expression for the flow Qx in the
aquifer underneath the stream:

Qx = −kH∆φ

λ

sinh(x/λ)
cosh(b/λ)

(9)

Combining (7) with (2) yields the follow expression for the head φ in the aquifer
underneath the stream.

φ(x) = φs + ∆φ
cosh(x/λ)
cosh(b/λ)

(10)

Representing the Stream with Line-Sinks

The following analysis has been adapted from a presentation by O. D. L. Strack
of the University of Minnesota given at the Third International Conference on
the Analytic Element Method in Modeling Groundwater Flow, Brainerd, MN,
April 19 - 21, 2000.

In Figure 1 a stream is shown in plan view with line-sink strings arranged
along each of the two stream boundaries. The line-sinks are given a width w
and a resistance c to represent the resistance to flow from the aquifer into the
stream that results from the bottom layer, see Figure . The resistance c can be
computed from (1). The question is what value to assign to the line-sink width
w. In Figure 2 a cross section is provided over the aquifer and the two line-sinks
with width w. The total inflow in each line-sink, per unit length perpendicular
to the plane of Figure 2 follows from Darcy’s law in the vertical direction:

qzw =
∆φ

c
w =

kH∆φ

λ2
w (11)
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Figure 2: Cross section over the aquifer and the line-sinks representing the
stream.

This inflow rate must be equal to the flow Qx0 in the aquifer at x = b or x = −b
in Figure , which follows from (9) by setting x = b or x = −b. This leads to the
following expression for Qx0 at x = −b:

Qx0 =
kH∆φ

λ
tanh(b/λ) (12)

Setting (11) equal to (12) yields for w:

w = λ tanh(b/λ) (13)

For values of λ much smaller than b expression (13) becomes:

w = λ λ� b (14)

Line-sinks without resistance

In the event the line-sink cannot be given a resistance, as is the case for the
groundwater flow model WhAEM , the same resistance to flow can be simulated
by moving the line-sink string inward from the stream boundary over a distance
λ, provided that λ � b. This may be seen as follows. Consider the flow Qx0

from the stream boundary to the line-sink inside of that boundary:

Qx0 = −kH
∆φ

d
(15)

where d is the distance between the stream boundary and the line-sink. The
head difference ∆φ is the same as in (8) with φs the head at the line-sink and
φ0 the head at the stream boundary. The two flows in (12) and (15) must be
the same, which results in the following expression for d:

d =
λ

tanh(b/λ)
(16)
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In case λ is much smaller than b this results in:

d = λ λ� b (17)

The parameter b is the half width of the stream, see Figure . Defining the total
width of the stream B = 2b the condition λ� b may, for practical purposes, be
expressed in terms of the width B as:

λ < 0.1B (18)

Rules of Thumb

Some rules of thumb are presented to facilitate the representation of streams
or lakes by line-sink strings in a manner that ensures the proper inflow rates
into the stream or lake. The rules of thumb prescribe the location of the line-
sinks and, if supported by the model, the choice of the resistance and width
parameters for these line-sinks.

Using line-sinks with resistance

In Figure 1 a stream is modeled with two line-sink strings. The line-sinks are
positioned at the stream boundary. The line-sinks have a resistance parameter
c and a width parameter w.

The first step is to calculate the resistance of the bottom layer of the stream
using (1):

c =
δ

kc
(19)

Next the characteristic leakage length λ must be calculated using (3)

λ =
√

kHc (20)

In the following rules the actual stream width is B, while the width parameter
for the line-sinks located along the stream boundaries is w. In the event that λ
is smaller than 0.1B the width w for a line-sink on the boundary of the stream
follows from:

w = λ λ ≤ 0.1B (21)

In the event that λ is larger than 0.1B the width w for the line-sinks on the
boundary of the stream follows from:

w = λ tanh(B/2λ) 0.1B < λ < 2B (22)

In the event that λ is larger than 2B the width w for the line-sinks on the
boundary of the stream follows from:

w = B/2 λ ≥ 2B (23)
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Figure 3: Modeling a stream using line-sinks without resistance.

If the stream is not in the immediate proximity of other boundary conditions
in the aquifer, for instance one or more wells, the exact location of the stream
boundary is less critical and the stream may be represented by a single line-
sink string at its axis with width w equal to double the width calculated from
expressions (21) through (23). For the case of a large characteristic leakage
length this implies setting the line-sink width equal to the actual stream width:

w = B λ > 2B (24)

Using line-sinks without resistance

In Figure 3 a stream is modeled with two line-sink strings near each stream
boundary. The line-sinks are head specified without resistance or width pa-
rameters, as found in WhAEM . To simulate the proper resistance to flow the
position of the line-sink string, relative to the stream boundaries, may be ma-
nipulated. As seen in Figure 3 the line-sinks are placed at a distance d from the
stream boundary. This distance may be calculated as follows:

d = λ λ ≤ 0.1B (25)

d =
λ

tanh(B/2λ)
λ > 0.1B (26)

Shifting line-sinks inward, away from the stream boundaries, over a distance d as
calculated by (26) may lead to unrealistic situations. For instance, if d is larger
than B/2 the line-sinks would be moved past the stream axis. However, if the
purpose of this relocation exercise is to force the proper interaction between the
well and the stream in terms of the groundwater flow rates it may be sufficient
to move only the line-sink string on the side of the stream opposite the well. In
this manner, the well will draw the proper (at least a more realistic) amount
of water from the stream. While the flow patterns between the well and the

6



Figure 4: Resistance to flow in the vertical plane (a) is replaced by resistance
to flow through a fictitious resistance layer(b).

stream are not realistic, the amount of flow is. In particular, this will improve
the size and shape of the capture zone upgradient from the well and the stream.
On the other hand if the distance d over which the line-sinks have to be shifted
becomes too large, for instance across the opposite stream boundary (d > B,
which occurs for λ > 0.65B), this ”trick” to simulate bottom resistance becomes
problematic. For the case of capture zone delineation it may be possible to move
the well away from the stream instead of the line-sinks away from the well. The
distance d over which the well is to be moved follows from (26). However, to
obtain reliable solutions for these larger values of λ it is recommended that a
groundwater flow model is used that can properly incorporate stream bottom
resistance.

Resistance to 3D Flow into the Stream

Previously, only the resistance to flow through stream or lake bottom sediments
has been considered. It may be necessary to also consider the resistance to flow
due to vertical flow components in the aquifer near and underneath the stream
or lake. The issue is illustrated in Figure 4, where flow in a vertical section
across a stream and aquifer is depicted for both a three-dimensional conceptual
model and a Dupuit-Forchheimer model. The vertical resistance to flow in
Figure 4(a) is replaced by the resistance to flow through a fictitious resistance
layer in Figure 4(b). The question is how to determine this resistance.

Assuming a wide stream or lake, the solution to the flow problem in Figure 4
is given by Verruijt (1970):

e
xπ
2H =

√{
sinh

(
kφπ

2σ

)
cos

(
Ψπ

2σ

)}2

+
{

cosh
(

kφπ

2σ

)
sin

(
Ψπ

2σ

)}2

(27)

and

tan
( yπ

2H

)
=

tan
(

Ψπ
2σ

)
tanh

(
kφπ
2σ

) (28)

7



where φ is the head, Ψ is the stream function, which is constant along stream-
lines, and σ [ft2/day] is the total flow over the aquifer height per unit length
perpendicular to the plane in Figure 4. We will consider the difference ∆φ in
head at a point L from the stream or lake boundary and the head at the lake
boundary. The head at the stream is found by substituting x = 0 and y = H
into (27) and (28), respectively, where H is the aquifer thickness, see Figure 4.
It follows from (28) with y = H that Ψ = σ and it follows from (27) with x = 0
and Ψ = σ that the head at the stream is zero. It follows from (27) with x = L
and Ψ = σ that:

e
Lπ
2H = cosh

(
k∆φ

σ

π

2

)
(29)

which may be rewritten as

σ =
∆φ

c∗
(30)

where
c∗ =

2
πk

arccosh
(
e

L
H

π
2

)
(31)

which may also be written as

c∗ =
2
πk

ln
(

e
L
H

π
2 +

√
e

L
H π − 1

)
(32)

The flow σ into the line-sink depicted in Figure 4(b) follows from:

σ =
(φa − φw)w

c
(33)

where φa and φw are the heads in the aquifer and line-sink, respectively. The
Dupuit-Forchheimer flow toward the line-sinks that define the stream or lake
boundary follows from Darcy’s law:

σ =
(φL − φa)kH

L
(34)

where φL is the head at x = L. Eliminating φa from (33) and (34) yields:

σ =
∆φw

Lw
kH + c

(35)

Comparing (35) with (30) and (31) yields for the line-sink resistance:

c =
2w

πk

{
ln

(
e

L
H

π
2 +

√
e

L
H π − 1− L

H

π

2

)}
(36)

or

c =
2w

πk

{
ln

(
e

L
H

π
2 +

√
e

L
H π − 1− ln

(
e

L
H

π
2

))}
(37)

which reduces to

c =
2w

πk
ln

(
1 +

√
1− e−

L
H π

)
(38)
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If L >> H this becomes
c =

2w

πk
ln 2 (39)

or briefly:
c = 0.4413

w

k
(40)

The resistance to vertical flow near the stream, as approximated by (40),
usually has only a small effect on the heads and flow rates in the aquifer, unless
the inflow or outflow from the stream is very large. This may locally be the case,
for instance, when pumping a well very close to the stream or lake boundary.
In case there is no bottom resistance in the stream or lake the line-sink width
w may be set to unity and c follows from (40) with w = 1 as c = 0.4413/k.
In the event that there is some bottom resistance, the line-sink width w must
be determined by use of the rules defined earlier in this document (only using
the bottom resistance in λ) and the resistance c, calculated from (40), must be
added to the bottom resistance before entering it on the Line-sink Properties
form in GFLOW.
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